
1

Project Title:

“Finding the Battleships”

Supercomputing Challenge

New Mexico

Final Report

April 3, 2019

Team #87

Media Arts Collaborate Charter School

Team Member(s):

Seungbin Chung

Teacher:

Creighton Edington

Project Mentors:

Creighton Edington

Geoff Danielson

2

Acknowledgements:

I would like to acknowledge the following for people for assisting and supporting me throughout

this project:

Creighton Edington: For teaching me the basics of how this project is done and for guiding me

throughout most of this project

Geoff Danielson: For helping me with figuring out the logic of one of the most crucial search

patterns and for mentoring me.

3

Table of Contents:

Introduction – 4

Materials and Methods – 4

How Battleship is played – 5, 6

Shot Patterns and Code – 6 – 15

Data Results – 15 – 17

Conclusion – 17

Bibliography – 18

4

Introduction

 We search for things every day. Whether it’s on the internet or whether we’re looking

for something that’s missing or hidden, these things are always a part of our everyday lives.

Searching can apply to anything in a serious or fun matter. However, each search method has a

different approach regarding the situation. Say we use the game, Battleship. How can we

optimize a search pattern to figure out what is the most efficient way at finding ships? From what

set of search methods can we use to compare and determine what has the highest hit rate?

 To search further into the question, I recreated the game Battleship using Netlogo. There

were two methods I used to compare data: one with spacing between the ships, and one with no

spacing. I also conducted this experiment using three search pattern methods to find out which of

the three are the most efficient at finding the battleships.

Materials and Methods:

To research this problem, I used 3 steps into solving the problem:

 1. Creating a program that plays the game

2. Creating an Ai (artificial intelligence) which plays the game

 3. Figuring out what is the most efficient search pattern.

I did this experiment with the program, Netlogo using “BehaviorSpace” for my trial.

5

How Battleship is played:

 There is a total of five ships: the carrier, battleship, cruiser, submarine, and destroyer. Each have

their own unique sizes from carrier which is the largest taking five tiles of space and the destroyer which

is the smallest taking two tiles of space. The ships and the number of spaces is listed below (data 1):

Ship: Number of spaces:

Carrier 5

Battleship 4

Cruiser 3

Submarine 3

Destroyer 2

(Data of ships and sizes in Battleship) (data 1)

The players place their ships down on a 10x10 grid and then take turns at guessing the coordinates of

their enemy ship. The main objective of the game is to sink all enemy ships. Each player has a chance of

either hitting a ship or missing a ship. Down below is an example of the layout of the game:

Image fetched from: https://www.wikihow.com/images/a/a9/Play-Battleship-Step-15-Version-2.jpg

https://www.wikihow.com/images/a/a9/Play-Battleship-Step-15-Version-2.jpg

6

 The coordinates are laid out from A-J and 1-10. Let’s say for example a player calls out the

coordinates A4. If a ship is there, the player will call out hit, if a ship is not there then the player will call

out miss. The players will place a marker usually red for hit and white for miss, to indicate whether the

ship was hit or not.

Shot Patterns and Code

By using Netlogo, I recreated Battleship and created the program to play the game. The

screenshot below is what my current game looks like:

(For this research, I mainly used the spaced out version to conduct my experiment.)

The following below are screenshots of the code for the search pattern algorithms:

7

(Random shot pattern above) (image 1)

8

(Algorithm for both pt-boat and carrier) (image 2)

9

(One of the shot pattern algorithms for carrier) (Image 3)

10

(Main shot pattern for carrier above) (image 4)

Information*: These are the main algorithms that go into the three shot patterns. The random

shot pattern will fire wildly until it hits something. The pt-boat shot pattern skips every other tile and

shoots (see image 6 below). The carrier shot pattern switches from 5 tiles, to 3 tiles, then to 2 tiles. The

carrier will skip 5 tiles until it hits the very top of the board, then will do the same to 3, and then finally

will finish off with 2 tiles. Below are examples of the pt-boat and the carrier shot pattern being used

without the ships. Screenshots in respective order: pt-boat, carrier, and carrier (afterwards)

11

(Shot pattern for pt-boat above) (image 5)

(Shot pattern for carrier five-shots first above) (image 6)

12

(Shot pattern for carrier, full shot pattern above) (image 7)

Note: Carrier switches patterns from skipping every 5 tiles when the five-shots indicator hits 20,

to 3, then to two (see image 6 and 7 above). The algorithm all these patterns also have is a ship searcher

where if a ship gets hit, it searches around the 4 tiles right next to the hit spot. If it does find a ship, it

keeps moving on trying to look for more in the vicinity. If it doesn’t find another ship, then it will resume

its original search pattern (See image 10 below). Down below are screen shots of the code and an

example of its usage:

13

(Part 1 for algorithm searching around ships when ship is hit) (image 8)

14

(Part 2 for algorithm searching around ships when ship is hit) (image 9)

15

(Example of next-shot being used) (image 10)

Information*: The way the next shot pattern works is it assigns the hit ship a value. The function

I used to describe this method is called the targeting-sequence. It’ll look around until it has searched all

4 tiles next to it and then reset the value to 0, meaning it won’t look around there anymore. After that,

it’ll assign another value if a tile hit was also part of the ship. If there are no more ships to be found after

that, all values will be reset to 0 and then it’ll return to its regular shoot pattern.

Data Results:

Using BehaviorSpace allowed me to run 1000 times and record it down on an excel sheet. By

doing this, I took the data given, and averaged the results of the precision of all runs for each pattern. I

did this for two of my versions: the spaced and the non-spaced version. Down below is a data table of

the averages and the standard deviation of both versions. (See data table 2 and 3 below)

Note: Standard deviation was used to determine which shot pattern was the most consistent.

16

Spaced Data Table:

Shot Patterns: Trial #1 Trial #2 Trial #3

Carrier Average: 24.47904

Standard deviation:
2.534173339

Average: 24.57789

Standard deviation:
2.549550481

Average: 24.24046

Standard deviation:
2.543882727

Pt-boat Average: 23.99062

Standard deviation:
1.610049588

Average: 24.13793

Standard deviation:
1.607781445

Average: 24.06614

Standard deviation:
1.626902121

Random Average: 23.15354

Standard deviation:
3.128043722

Average: 22.97259

Standard deviation:
3.116011059

Average: 22.97422

Standard deviation:
2.998121332

(Spaced data table) (data 2)

Non-Spaced Data Table:

Shot Patterns: Trial #1 Trial #2 Trial #3

Carrier Average: 27.78826

Standard Deviation:

4.636896

Average: 28.00133

Standard Deviation:

4.830557

Average: 28.23691

Standard Deviation:

4.878385

Pt-boat Average: 26.31623

Standard Deviation:

3.081075

Average: 26.24216

Standard Deviation:

3.082028

Average: 26.28924

Standard Deviation:

3.035912

Random Average: 27.1237

Standard Deviation:

5.683653

Average: 26.76697

Standard Deviation:

5.494594

Average: 26.18048

Standard Deviation:

5.175764

(Non-spaced data table) (data 3)

17

The result of the data shown above is interesting, because we can see a significance between

spaced and non-spaced in terms of both average and standard deviation. Since spaced is harder to track

down, it has less of an average in terms of precision (see data 2 above). Non-spaced on the other hand

has possibilities of making ships easier to find which causes the average to go up (see data 3 above).

What surprised me the most about the results was the non-spaced where pt-boat was the least precise

between the carrier and the random shot patterns (data 3). The carrier on both data sets was the most

effective one, and the second most consistent compared to the pt-boat which had the lowest standard

deviation in both sets of data. Even though there were more methods to solve this by, I chose the most

common methods used by people to see how effective the comparison might be.

Conclusion

In conclusion, I was able to determine from the three sets of search patterns, that the carrier

had the most effective way of searching for hidden battleships. This was a surprising result, as I expected

the pt-boat method to be the most effective since it was the most consistent search pattern. I believe

that the carrier may have had the edge because it’s wide range of search made it easier to cover spots

that were less examined, and the way the code was set up, from skipping from 5 to 3 to 2 was the

fastest way to get all the ships.

18

Bibliography

Pattern Search (Optimization), Wikipedia, February 7th, 2019

(https://en.wikipedia.org/wiki/Pattern_search_(optimization))

Tips how to win battleship, UltraBattleship

(http://www.ultrabattleship.com/tips.php)

Search Algorithm, Wikipedia, April 1st, 2019

https://en.wikipedia.org/wiki/Search_algorithm

Battleship, DataGenetics

http://www.datagenetics.com/blog/december32011/

https://en.wikipedia.org/wiki/Pattern_search_(optimization)
http://www.ultrabattleship.com/tips.php
https://en.wikipedia.org/wiki/Search_algorithm
http://www.datagenetics.com/blog/december32011/

